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Abstract. The exchange interaction of polaronic carriers with localized spins leads to a ferro-
magnetic/paramagnetic transition in doped charge-transfer insulators with strong electron–phonon
coupling. The relative strength of the exchange and electron–phonon interactions determines
whether the transition is first or second order. A giant drop in the number of current carriers during
the transition, which is a consequence of local bound-pair (bipolaron) formation in the paramagnetic
phase, is extremely sensitive to an external magnetic field. Below the critical temperature of the
transition,Tc, the binding of the polarons into immobile pairs competes with the ferromagnetic
exchange between polarons and the localized spins on Mn ions, which tends to align the polaron
moments and, therefore, breaks up those pairs. The number of carriers abruptly increases below
Tc leading to a sudden drop in resistivity. We show that the carrier-density collapse explains the
colossal magnetoresistance of doped manganites close to the transition. BelowTc, transport occurs
by polaronic tunnelling, whereas at high temperatures the transport is by hopping processes. The
transition is accompanied by a spike in the specific heat, as experimentally observed. The gap
feature in tunnelling spectroscopy is related to the bipolaron binding energy, which depends on the
ion mass. This dependence explains the giant isotope effect of the magnetization and resistivity
upon substitution of18O for 16O. It is shown also that the localization of polaronic carriers by
disordercannotexplain the observed huge sensitivity of the transport properties to the magnetic
field in doped manganites.

1. Introduction

The existence of a metal–insulator transition in lanthanum manganites was established in
the early 1950s [1] and was extensively studied thereafter. The transition is associated
with unusual transport properties, including large magnetoresistance in the vicinity of the
transition, studied in a family of doped manganites with perovskite structure with the chemical
formula Re1−xDxMnO3, where Re is the rare earth (Re= La, Pr, Nd), and D is the divalent
metal (D = Ca, Sr, Ba). It is worth mentioning the early studies of the transition in
La1−xPbxMnO3 [2], followed by the studies of Pr1−xCaxMnO3 [3], Nd0.5Pb0.5MnO3 [4],
La0.67Ba0.33MnO3 [5], La0.75Ca0.25MnO3 [6], and La1−xCaxMnO3 [7,8] (see review [9]). The
recent resurgence of interest in these systems is related to the demonstration of a very large
negative magnetoresistance in thin films [5,7] (sometimes termed colossal magnetoresistance
(CMR)), which immediately raised the possibility of technological applications. The colossal
magnetoresistance is not limited to doped perovskite manganites, but was also observed
in pyrochlore manganites, chromium spinels [9], and some other systems, like europium
compounds.
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The metal–insulator transition in lanthanum manganites [1, 7, 8] has been traditionally
attributed to a ‘double-exchange’ mechanism, which results in a varying bandwidth of holes
doped into the Mn3+ d shell as a function of the doping concentration and temperature [10].
Recently it has been realized [11], however, that the effective carrier–spin exchange interaction
of the double-exchange model is too weak to lead to a significant reduction of the electron
bandwidth, and, therefore, cannot account for the observed scattering rate [12] (see also
reference [13]) or for the localization induced by slowly fluctuating spin configurations [14].
In view of this severe shortcoming of the double-exchange model, it has been suggested [11]
that the essential physics of perovskite manganites lies in the strong coupling of carriers to the
Jahn–Teller lattice distortion. The argument [11] was that in the high-temperature state the
electron–phonon coupling constantλ is large (so the carriers are polarons); as temperature
decreases the growing ferromagnetic order increases the bandwidth and thus decreasesλ

sufficiently for metallic behaviour to occur below the Curie temperatureTc, in accordance
with polaron theory [15]. A giant isotope effect [16], the sign anomaly of the Hall effect, and
the Arrhenius behaviour of the drift and Hall mobilities [17] over a temperature range from 2Tc
to 4Tc unambiguously confirmed the polaronic nature of the carriers in manganites. Polaron
hopping transport accounts satisfactorily for the resistivity in the paramagnetic phase [17].

However, the known relation between magnetization and transport belowTc and the
unusual magnetic ion dynamics have prompted the conclusion that polaronic hopping is
also the prevalent conduction mechanism belowTc [18]. Low-temperature optical [19–21],
electron energy-loss (EELS) [22], and photoemission spectroscopies [23] showed that the
idea [11, 14] of a ‘metallization’ of manganites belowTc is not tenable. A broad incoherent
spectral feature [19–21,23] and a pseudogap in the excitation spectrum [23–25] were observed
while the coherent Drude weight appeared to betwo ordersof magnitude smaller [20] than is
expected for a metal, or evenzeroin the case of layered manganites [23]. EELS [22] confirmed
that manganites are doped charge-transfer insulators having p holes as the current carriers
rather than d (Mn3+) electrons. The photoemission and O 1s x-ray absorption spectroscopy
of La1−xSrxMnO3 showed that the itinerant holes doped into LaMnO3 are indeed of oxygen
p character, and their coupling with the d4 local moments on Mn3+ ions aligns the moments
ferromagnetically [26]. Moreover, measurements of the mobility [9,27] do not show any field
dependence and there are significant deviations from Arrhenius behaviour close toTc [17,28].
The resistivity calculated from the modified double-exchange theory is in poor agreement
with the data, and the characteristic theoretical field (∼15 T) for CMR is too high compared
with the experimental one (∼4 T) [11]. As a result, self-trapping aboveTc and the idea of
metallization belowTc do not explain CMR either. Carriers retain their polaronic character
well belowTc, as manifested also in the measurements of resistivity and thermoelectric power
under pressure [29].

Therefore, the experimental evidence overwhelmingly suggests that the low-temperature
phase of the doped manganites is not a metal, but a doped polaronic semiconductor. The double
exchange and the presence of polaronic carriersare insufficientto explain the physics of colossal
magnetoresistance. One can also add that there are known classes of CMR materials where it
is guaranteed that double exchange isnon-existent, like in pyrochlore manganites, chromium
spinels [9], and other compounds.

In the present paper, we propose a new theory of the ferromagnetic/paramagnetic phase
transition accompanied by a current-carrier-density collapse (CCDC) and CMR. Taking into
account the tendency of polarons to form local bound pairs (bipolarons) as well as the exchange
interaction of p polaronic holes with d electrons, we find a novel ferromagnetic transition
driven by non-degenerate polarons in doped charge-transfer magnetic insulators. The crux
of the matter is that in the paramagnetic state above the critical temperature a large fraction



Theory of colossal magnetoresistance in doped manganites 1991

of polarons is bound into immobile pairs (bipolarons). As the temperature decreases in the
paramagnetic phase (T > Tc), so does the density of mobile polarons, and the resistivity
quickly increases with the decline of the number of carriers. With the onset of ferromagnetic
order atTc, the situation changes dramatically. As a result of the exchange interaction with the
localized Mn spins, the energy of one of the polaron spin sub-bands sinks abruptly below the
energy of the bound pairs. The pairs break up, the density of carriers (mobile polarons) jumps
up, and the resistivity suddenly declines, as observed experimentally. The occurrence of the
deep minimum in the carrier density close to the transition point, which we suggest calling a
current-carrier-density collapse, allows us to explain the magnetization and temperature/field
dependence of the resistivity of La1−xCaxMnO3 close toTc as well as the giant isotope effect,
the unusual tunnelling gap, and the specific heat anomaly.

2. Ferromagnetic transition in doped manganites

The Hamiltonian containing the physics compatible with the experimental observations
mentioned above is

H =
∑
k,s

Ekh
†
kshks −

Jpd

2N

∑
k,j

mkS
z
j +Hsf +HHund

+ (2N)−1/2
∑
k,q,s

h̄ωqγqh
†
k+qshks(bq − b†

−q) +
∑
q

h̄ωq(b
†
qbq + 1/2) (1)

whereEk is the local density approximation (LDA) energy dispersion [30],hks is the
annihilation hole operator of a (degenerate) p oxygen band with spinss = ↑ and↓, Jpd
is the exchange interaction of p holes with four d electrons of the Mn3+ ion at the sitej ,
mk ≡ h†

k↑hk↑ −h†
k↓hk↓, S

z
j is thez-component of Mn3+ spin, which isS = 2 due to the strong

Hund coupling,HHund, of the four d electrons on Mn3+ sites, andN is the number of unit cells.
The two last terms of the Hamiltonian describe the coupling of p holes with phonons and the
phonon energy, respectively (γq = −γ ∗−q is the coupling constant [15]). The Hamiltonian

also contains spin-flip processes,Hsf, like S+
j h

†
k′↓hk↑ + h.c., and terms with non-diagonal

components of the polaron magnetization operatormk′k = h†
k′↑hk↑ − h†

k′↓hk↓, which are not
essential for our discussion. If the holes were doped into the d shell instead of the p shell, the
Hamiltonian would be similar to the Holsteint–J model [31] with about the same physics of
the CMR as proposed below.

The essential results are readily obtained within the Hartree–Fock approach for the
exchange interaction [32] and the Lang–Firsov polaron transformation [33] which removes
terms of first order in the electron–phonon interaction in equation (1),H̃ = eUHe−U , where

U =
∑
jqs

h
†
jshjsujq(b

†
−q + bq) (2)

Here,

hjs = N−1/2
∑
k

hks exp(ik ·Rj ) ujq = (2N)−1/2γq exp(iq ·Rj )

andRj is the lattice vector.
With the use of this transformation one finds spin-polarized p bands

εk↑(↓) = εk − (+) 1

2
JpdSσ − (+) µBH. (3)

Here

εk = 1

N

∑
i,j

tije
ik·(Ri−Rj )e−g

2
ij ≈ Eke−g2

(4)
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with

g2
ij =

1

2N

∑
q

|γq|2
[
1− cosq · (Ri −Rj )

]
coth

(
h̄ωq

2kBT

)
(5)

whereg2 ∼ γ 2 is the characteristic value ofg2
ij andωq is the phonon frequency. Equation (5)

describes the polaronic band narrowing [33] and the isotope effect [16]. The bare hopping
integralstij define the unrenormalized LDA (local density approximation) band dispersion in
the initial Hamiltonian (1),

Ek = 1

N

∑
i,j

tij exp[ik · (Ri −Rj )].

In equation (3),σ is the normalized thermal average of the Mn spin, found from the equations
below;H is the external magnetic field, andµB is the Bohr magneton. The p–d exchange
interaction depends only on the total (average) magnetization because we assume that the
system is homogeneous. In addition to band narrowing, the bands shift rigidly down; the value
of thispolaron shiftEp is

Ep = 1

2N

∑
q

h̄ωq|γq|2. (6)

The ions Mn3+ are subject to a molecular fieldJpdm/(2gMnµB), according to (1), and
their magnetizationσ ≡ 〈Szn〉/S is given by

σ = BS
(
Jpdm + 2gMnµBH

2kBT

)
(7)

with m the magnetization of holes determined as

m ≡ 1

N

∑
k

〈mk〉 =
∫

dε N(p)(ε)
[
fp(εk↑)− fp(εk↓)

]
. (8)

Here

BS(x) = [1 + 1/(2S)] coth[(S + 1/2)x] − [1/(2S)] coth(x/2)

is the Brillouin function,gMn the Land́eg-factor for Mn3+ in a manganite,N(p)(ε) the density
of states in the narrow polaron band, andfp(εks) = [y−1 exp(εks/kBT )+1]−1 the Fermi–Dirac
distribution function withy = exp(µ/kBT ) determined by the chemical potentialµ. Note
that forJpd < 0 (antiferromagnetic coupling) the main system of equations (16)–(18) remains
the same after a substitutionJpd → |Jpd |.

Along with the band-narrowing effect, the strong electron–phonon interaction binds two
polarons into a local pair (bipolaron), as described in detail in reference [15]. These bipolarons
are practically immobile in manganites because of the strong electron–phonon interaction, in
contrast with the case for cuprates, where bipolarons are mobile and responsible for in-plane
transport [34], owing to their geometry [35] and their moderate coupling with phonons [36].

If these bound pairs are extremely local objects, i.e. two holes on the same oxygen, then
they will form a singlet. If, however, these holes are localized on different oxygens, then they
may well have parallel spins and form atriplet state. The latter is separated from the singlet
state by some exchange energyJst , with some interesting consequences discussed below.
Because of their zero spin, the only role of the singlet bipolarons in manganites is to determine
the chemical potentialµ, which can be found with the use of the total doping density per cell
x [34].

The interplay between the localization of p holes into bipolaron pairs and the exchange
interaction with the Mn d4 local moments is responsible for CMR. The density of these pairs
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has a sharp peak at the ferromagnetic transition when the system is cooled down through the
critical temperatureTc. As the system is cooled, but is still in a paramagnetic state aboveTc,
an increasing fraction of the polarons forms immobile pairs (bipolarons), and the resistivity of
the system increases. BelowTc, the binding of polarons into immobile pairs competes with
the ferromagnetic exchange, which tends to align the polaron moments and, therefore, breaks
those pairs apart. The number of carriers abruptly increases belowTc leading to a sudden drop
in resistivity. These competing interactions lead to the unusual behaviour of CMR materials
and the extreme sensitivity of their transport to external fields.

To prove the point, we shall find the thermodynamic potential and solve for its extremal
value to find the equation of state for the polarons. The thermodynamic potential�

� = �p +�bp +�S +
1

2
JpdSσm (9)

has contributions from polarons, bipolarons, localized Mn3+ spins, and the double-counting
term, respectively. For the polarons

�p = −kBT
∑
s

∫
dε N(p)

s (ε) ln(1 +ye−ε/kBT ) (10)

whereN(p)
s (ε) is the density of spin-polarized states in the polaron band. We can easily estimate

the integral, assuming that the critical temperature of the ferromagnetic transition is comparable
with the polaron and bipolaron bandwidth [37]. Then (bi)polarons are not degenerate in the
relevant temperature range,fp ' y exp(−ε/kBT ) andfbp ' y2 exp[(1 − ε)/kBT ], and we
get

�p = −2yνkBT cosh
JpdSσ + gµBH

2kBT
(11)

whereν (=3) is the degeneracy of the polaron p band.
Polarons, bound in bipolarons with a binding energy1, give a contribution

�bp = −kBT ln(1 + ν2y2De1/kBT ) (12)

whereD accounts for the presence of triplet bipolarons (see below, section 6). We shall
consider here a simple case in which the separation of the triplets from the singlets,Jst , is
much larger than the critical temperature. In this caseD = 1.

Finally, for the localized spin contribution we will have

�S = −kBT ln
sinh(S + 1

2)η

sinh 1
2η

(13)

with η = ( 1
2Jpdm + gMnµBH)/kBT .

The density of polaronsn = −(∂�p/∂µ)T is found from the condition that the total
number of carriers is given by the doping concentrationx [34]:

x = −(∂�/∂µ)T (14)

whereas one can find equations for the magnetization and the normalized spinσ from the
following conditions:

(∂�/∂σ)T = (∂�/∂m)T = 0. (15)

Thus, we obtain the following main system of mean-field equations, assuming for a moment
that the contribution from triplet bipolarons is small (D = 1):

n = 2νy cosh[(σ + h)/t ] (16)

m = n tanh[(σ + h)/t ] (17)

σ = B2[(m + 4h)/(2t)] (18)
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and

y2 = x − n
2ν2

exp(−2δ/t) (19)

which follows from (14). When triplet bipolarons become important, one should replace
equation (19) by the more accurate equation (28). Here we use the dimensionless temperature
t = 2kBT /(JpdS), magnetic fieldh = 2µBH/(JpdS), and the bipolaron binding energy
δ ≡ 1/(JpdS), andν (=3) is defined after equation (11).

The polaron densityn is determined by equations (16), (19) withσ = 0 aboveTc. At the
critical temperature, the polaron density has a minimal valuenc ' (2x)1/2 exp(−δ/tc); it then
grows with temperature and saturates atn = (1 + 2x)1/2 − 1 at large temperatures. This is
reminiscent of ordinary semiconductor behaviour.

c

JSσ

E E

∆/2
−∆/2

BP (bound pairs)

P

P

PP

0

T<Tc T>T

Figure 1. A schematic diagram of free-polaron (P) and polaron bound-pair (BP) densities of states
at temperatures below and aboveTc for up-spin (↑) and down-spin (↓) moments. The pairs (BP)
break belowTc if the exchangeJpdS between p-hole polarons and Mn d4 local spins exceeds
the pair binding energy1, as in the case shown. The exchange interaction of polarons with the
localized spins sets in belowTc; the spin-up polaron sub-band sinks abruptly below the bipolaron
band, causing the break-up of the immobile bipolarons (left-hand panel). A sudden drop (collapse)
of the density of the current carriers (polarons) in the vicinity of the ferromagnetic transition is the
cause of a large peak in resistivity and colossal magnetoresistance.

3. Competing interactions and carrier-density collapse

The remarkable observation is that there is a sharp increase of the polaron density (and the
conductivity) at temperatures belowTc. The polaron density approaches the total densityx

at T → 0 if δ ≡ 1/JpdS < 1, as one can see from equation (16) with a saturated magnet-
izationσ = 1. The physical origin of the unusual minimum of the current-carrier density at
Tc lies in the instability of bipolarons belowTc due to the exchange interaction of polarons
with Mn d electrons. The spin-polarized polaron band falls below the bipolaron band, so all
carriers are unpaired atT = 0 if JpdS > 1. The evolution of the Hartree–Fock bands with
temperature, which corresponds to this behaviour, is illustrated in figure 1. Note that at all
T > Tc the position of the polaron bands is fixed at1/2 above the bipolaron band, since there
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σ = m = 0 (equation (3)). Their population depends on temperature via the chemical potential.
The exchange interaction of polarons with the localized spins sets in atTc, and in the low-
temperature ferromagnetic phase one of the polaron spin sub-bands sinks abruptly below the
bipolaron band, causing the break-up of the immobile bipolarons. This interesting feedback
mechanism can result in either a continuous or discontinuous ferromagnetic transition, as
follows from a simple analysis below.

Linearizing equations (16)–(18) with respect toσ andm nearTc, we find the critical
temperature in zero magnetic field

tc = (nc/2)1/2 (20)

where the polaron density at the transitionnc is determined by

n1/2
c ln

2(x − nc)
n2
c

= 23/2δ. (21)

It is easy to see that this transcendental equation has solutions only forδ below some
critical value δc(x). This means that forδ > δc(x) the ferromagnetic phase transition
is first order with jumps of the polaron density and the magnetization [38], as has been
observed [39]. The transition is continuous whenδ < δc(x). The numerical solution of
the system of equations (16)–(19) defines the crossover between first- and second-order phase
transitions [38].

0.1 0.2 0.3 0.4
t

0

2

4

6

8

10

x/
n

h=0
h=0.005
h=0.01

0.0000 0.0075
h

0.16

0.20

t c

FERRO PARA

Figure 2. Inverse polaron densityx/n in a doped charge-transfer insulator for different magnetic
fieldsh ≡ gµBH/JpdS, 1/JpdS = 0.5, dopingx = 0.25. 1 is the pair binding energy;JpdS
is the exchange energy of the O p hole polarons with Mn d localized spins. For other notation
see the text. Note that the transition is strong first order, and then becomes continuous when the
external magnetic field exceeds some critical value. Inset: the temperature of the phase transition
as a function of the external magnetic field.

A relatively weak magnetic field has a drastic effect on the inverse carrier density, 1/n, near
the first-order phase transition, or second-order phase transition close to first order, since an
order parameter abruptly changes close toTc. A field equal to only 0.005JpdS/(2µB) reduces
the carrier-density collapse by more than a factor of two, and a field of 0.01JpdS/(2µB)
changes the transition into the continuous one; see figure 2. This behaviour directly relates to
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the colossal magnetoresistance found in doped manganites, as we shall discuss in the following
section.

One can draw an analogy of this situation with singlet magnetism, e.g. in Pr compounds
[40]. In this case the ground state of magnetic ions is a singlet. Depending on the ratio between
the exchange constant and the singlet–triplet (doublet) energy gap produced by crystal-field
splitting, there exist first- or second-order phase transitions into a ferromagnetic state. In our
case the triplet states become important whenJst . 1; the larger statistical weight of triplet
bipolarons leads to a deeper minimum in the density of polarons at the critical temperature,
and, therefore, to a larger jump in resistivity. The effect of polaron binding in a triplet state
will be discussed below.

0

50

100

0

50

100

x/
n

H=0T
2T
4T

200 250 300
0

50

100

experiment
small polaron theory

ρ(
m

Ω
-c

m
)

(a)

(b)

(c)

H=0T

2T

4T

hopping

tunnelling

Figure 3. The resistivity of La0.75Ca0.25MnO3 calculated within the present theory for1 = 900 K,
JpdS = 2250 K for a temperature-independent mobility (a). The experimental results [8] are shown
in panel (b). Note the extreme sensitivity of the theoretical resistivity to the external magnetic field
(a), also observed experimentally for the doped manganite (b) (the thin solid curve is a guide to
the eye). Panel (c): the resistivity calculated with a temperature-dependent mobility according to
equation (26) withω0 = 50 meV andEa = 300 meV, and the temperature-dependent polaron
density from panel (a) compared with the experimental results. Note the crossover of the transport
mechanism from low-temperature tunnelling to high-temperature hopping at about the transition
temperature. For the notation see the caption to figure 2.

4. Colossal magnetoresistance

As a result of the carrier-density collapse, the resistivityρ = 1/(enµp) has a sharp maximum,
which is extremely sensitive to the magnetic field in the vicinity ofTc. In fact, our theory,
equations (16)–(19), describes all of the major features of the temperature/field dependence
of ρ(T ) [8], with a temperature and the field-independent polaron drift mobilityµp in the
experimental range of the magnetic field; see figures 3(a), 3(b). It gives the correct magnitude
of the effect on resistivity and explains the extreme sensitivity to external magnetic fields. This
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suggests thatcurrent-carrier-density collapseis the origin of CMR.
In general, one has to take into account the temperature dependence of the polaron mobility

to extend our theory for temperatures far away from the transition. At high temperatures, the
mobility µp of polarons is dominated by hopping events since the polaron band-narrowing
factor g2 grows linearly withT , making tunnelling in a narrow polaron band virtually
impossible atkBT > h̄ω0/2, whereω0 is the characteristic phonon frequency [33]. A simple
estimate for the so-called adiabatic hopping conductivity together with the Einstein relation
between the diffusion constant and mobility immediately yields

µ(hop)
p ∼ µ0

2π

h̄ω0

kBT
exp(−Ea/kBT ) (22)

whereµ0 = ea2/h̄ is the characteristic mobility (one can estimatea as the O–O distance in
manganites), andEa is the activation energy for the hopping. The tunnelling mobility is given
by

µ(tun)
p = µ0

t̄2e−2g2

h̄kBT
τ (23)

with the relaxation timeτ estimated by Lang and Firsov [33]:

τ ≈ (Ea/t̄)4[1ω/ω2
0] sinh2(h̄ω0/2kBT ) (24)

wheret̄ is the characteristic bare hopping integraltij , and1ω is the phonon dispersion. The
resistivity is then given by

ρ = 1/σ σ = ne(µ(tun) +µ(hop)). (25)

With our low polaron density at the transition, the polaron mobility isµp = 0.2 cm2 V−1 s−1

for x = 0.33 [17], and about 0.03 cm2 V−1 s−1 for x = 0.25 [8], which lie in the range typical
of polaronic conductors like TiO2 at room temperature [15]. We have fitted the observed
resistivity to the above expression (figure 3(c)) using forω0 a value of 50 meV, which is close
to the phonon cut-off in LCMO (50–70 meV [41]). The fit indicates that the activation energy
is close toEa = 300 meV. A crossover from tunnelling to hopping occurs at around the
critical temperatureTc, which is not very different from ¯hω0/2kB [42]. Agreement with the
experiment (figure 3(c)) supports the idea that the temperature dependence of the resistivity
is due primarily to CCDC. The temperature dependence of the small-polaron mobility then
allows the resistivity far away from the transitionboth above and belowTc to be explained.

5. Anomalous specific heat

The carrier-density collapse is also evident through anomalies in thermodynamic quantities.
Indeed, we have shown above that the ferromagnetic transition is first order, or second order
close to first order, as observed. The thermodynamic potential changes rather abruptly in the
vicinity of the phase transition and this results in a sharp peak in the specific heatC (figure 4),
which has been observed [43]. Note that this isnota result of critical fluctuations as suggested
earlier [43], since they are absent or severely suppressed when the phase transition is first order,
or close to it. We see that our theory is in quantitative agreement with the experiment for this
anomalous thermodynamic quantity.

6. Triplet bipolarons

Let us now discuss the modification which arises if we include exchange between O holes
bound into bipolarons. This exchange generally induces a splittingJst between singlet and
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Figure 4. The calculated anomalous part of the specific heat for different values of the magnetic
fieldH . Inset: the experimental results for La0.67Ca0.33MnO3 [42] (the thin solid curve is a guide
to the eye).

triplet states of the bipolaron. This changes somewhat the thermodynamic potential of the
bipolarons, since the triplet is subject to a Zeeman splitting. The factorD is then

D = 1 + e−Jst /kBT sinh(3ξ/2)/ sinh(ξ/2) (26)

as it accounts for thermal excitations of singlet bipolarons into the triplet state, separated from
the singlet by the energyJst . The parameter

ξ = (J̃pdSσ + Vbpm + gµBH)/kBT (27)

depends on exchange interaction of the bipolarons with Mn3+ spins given by the exchange
constantJ̃pd , and with delocalized polarons, given by the exchange constantVbp. Note that
D = 4 atJst/kBT � 1, whereasD = 1 forJst/kBT � 1, which reflects the higher statistical
weight of triplet states compared to singlets.

It is assumed, as is usually the case, that the triplet states lie higher in energy than the singlet
state,Jst > 0. If the singlet–triplet splitting becomes smaller than the gap,Jst . 1, then,
because of the higher number of the triplet states, their thermal population leads to a deeper
minimum in the density of polarons and, therefore, to a larger jump in resistivity (figure 5).
The dependence of the population of the triplet states on the external field makes the system
somewhat less sensitive to the field. We make an essential assumption thatJst > 0 and that
the exchange between spins on Mn and triplet bipolarons,J̃pd , is suppressed to values�Jpd
because the bipolarons are strongly localized (we also expect that the exchange constantVbp
is the smallest one in (27)). Otherwise, the triplet bound pairs, if they were formed in the
paramagnetic phase, can survive in the ferromagnetic phase, thus reducing or eliminating the
carrier-density collapse.

The equation (19) is changed to read

y2 = x − n
(2− x + n)ν2D

exp(−2δ/t) (28)

whereas the main system of equations (16)–(19) remains the same.D is given by equation (26).
The effect of triplet bipolarons on the thermodynamics of doped manganites becomes
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Figure 5. The inverse polaron densityx/n for different magnetic fields for a system with triplet
and singlet bipolarons versus temperaturet ≡ 2kBT /JpdS. (1/JpdS = 0.5, dopingx = 0.25,
and we assumeJst � 1.) The jump in carrier density is much larger in a system with triplet
bipolarons, but the critical temperature and sensitivity of the critical temperature to the magnetic
field is lower in comparison with the case for singlet bipolarons. For the notation see the caption
to figure 2.

insignificant whenJst/1 > 1, and the results are similar to the case in which only singlet
bipolarons are involved. The polaron density at the transitionnc is determined by

n1/2
c ln

2(x − nc)
Dn2

c [1− (x − nc)/2]
= 23/2δ (29)

which is similar to the case of singlet polarons and also indicates a crossover from first- to
second-order phase transition. We compare the carrier-density collapse in a system with triplet
bipolarons to that with singlet bipolarons alone in figure 5. The jump in the carrier density
at the transition is a few times larger in this case as compared to that for singlet bipolarons.
At the same time the critical temperature shifts to lower values, and the sensitivity to external
magnetic field slightly reduces.

7. Tunnelling gap and giant isotope effect

Recent tunnelling measurements have shown that in the vicinity ofTc a gap in the quasi-
particle spectrum opens up [24,25]. Again, it is difficult to reconcile this gap with the notion
of a (half-) metallic ferromagnetic state belowTc [44]. In half-metallic ferromagnets, like CrO2
or Fe3O4, there is a band gap for electron states of onlyonespin direction. The opposite-spin
electrons have no gap at the Fermi level, similar to a standard metal situation. These states
will contribute to tunnel current as in conventional metals, so there would beno temperature-
dependent gap feature in the tunnel spectroscopy [44] like the one observed for the doped
manganites [24].

We note that within the framework of our theory there should be a temperature-dependent
gap1 related to the breakdown of a bipolaron into two polaronic carriers. The density of
bipolarons peaks atTc, whereas the polaron density dips there (figures 1, 2) and, therefore,
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Figure 6. The relation between the gapδ ≡ 1/JpdS and the critical temperaturetc ≡ 2kBTc/JpdS
calculated from the present theory. Inset: the tunnelling gap in the density of states for samples with
different temperatures of the transition: La0.8Ca0.2MnO3, Ttr = 196 K; (NdLa)0.73Pb0.27MnO3
(Ttr = 275 K); La0.7Pb0.3MnO3 (Ttr = 338 K) [24]. For the notation see the caption to figure 2.

the gap feature in the tunnellingI–V curves will be most pronounced in this region, as
observed [24]. Spin-polarized polarons will provide a gapless background for the tunnelling
current, which is least important in the vicinity of the transition temperature. We note that
STM should also be sensitive to the presence of the one-particle charge-transfer gap between
filled Mn d and empty O p states. In addition to the temperature dependence, we can predict
how the gap feature will depend on the critical temperature of the transition (figure 6). Namely,
as already follows from our discussion, with the increase of1 the critical temperatureTc goes
down [38]. Very similar behaviour has indeed been observed experimentally for samples with
different critical temperatures (figure 6, inset) [24].

The giant isotope effect in La0.8Ca0.2MnO3, where a shift of−21 K in Tc was observed
as a result of16O-to-18O substitution [16], is quantitatively explained within our approach.
Namely, the gap is given by [45]

1 = 2Ep − VC − 1

2
W (30)

whereEp is the polaron level shift,VC is the Coulomb repulsion between bound polarons, and
W = W0 exp(−g2) is the polaron bandwidth renormalized from the bare valueW0 with the
electron–phonon interaction constantg2 [15]. Theonlyquantity in (30) that depends on ionic
mass is the polaronic exponentg2 = γEp/(h̄ω) ∝ M1/2 [15], whereγ < 1 is a numerical
coefficient depending on the radius of the electron–phonon interaction [35]. As immediately
follows from this relation, isotope substitution will change the gap1 in the following way:

118 = 116 +Wg2
16(
√

18/16− 1) (31)

where indices mark the quantities for the corresponding isotopes of oxygen. According to (31)
118 is alwayslarger than116. This automatically leads to a lowering ofTc as a result of the
isotope substitution, as observed [16], in figure 7. The resistivity, on the other hand, islarger in
18O-substituted samples, and this correlation seems to be supported by recent experiments [46].
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Figure 7. The isotope effect on the magnetization (a) and the inverse carrier density (b) of
La0.8Ca0.2MnO3+y calculated in the present theory. Inset: experimental results [16]. The sub-
stitution16O→ 18O leads to increased resistivity (b).

Note that thesingle parameterdefining the isotope effect on the magnetic transition and the
resistivity jump isWg2

16, since neitherEp norVC depend on the ion mass.

8. Localization of polarons by disorder

We have also studied the localization of p holes due to a random field with a gap1/2 between
localized impurity levels and the conduction band. The energy of polarons on impurity centres
is given by

Ei↑(↓) = −1
2
− (+) 1

2
Vipm− (+) µBH (32)

whereVip is the exchange interaction between localized and delocalized polarons. The band
diagram for this case is the same as that in figure 1 with the replacement of the bipolarons by
localized polarons.

Assuming that the Hubbard repulsion prevents a double occupancy of the impurity centres,
one can easily obtain the thermodynamic potential for impurities

�i = −kBT ln

[
1 + 2νye1/2kBT cosh

( 1
2Vipm +µBH

kBT

)]
. (33)

The chemical potential is found to be

y = x − n
2νn cosh(ζ )

exp(−δ/t) (34)

whereζ = ( 1
2Vipm + µBH)/kBT , if we assume that the total number of impurity states isx

(≡ doping).
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We have found similar features of the phase transition in zero field in the impurity case, as
compared with the previous case with bipolarons. Thus, we obtain, by linearizing the system
of equations of state (16)–(18) with (34), the following equation for the polaron density at the
transition in zero field:

n1/2
c ln

x − nc
n2
c

= 21/2δ. (35)

Apparently, it has solutions only forδ < δc(x). Therefore, the transition is first order for
δ ≡ 1/JpdS > δc(x) and second order forδ < δc(x), with δc(x) slightly larger than in the
case of the bipolaron localization. This follows from the same consideration as in our previous
discussion of equation (21).

The field sensitivity in the case of disorder-localized polarons is much lower than for the
bipolarons. This stems from the different functional dependence of the chemical potential.
The present approximations are valid in the limity � 1, meaning that the polaron carriers are
non-degenerate. In contrast to the case of the bound-polaron pair formation, in the impurity
case the expression (34) fory is singular,y ∝ 1/n, in the limit of small polaron density.
This means that in the vicinity of the current-carrier-density collapse the value ofy sharply
increases in the case of polarons localized on impurities. As a result, the collapse becomes less
pronounced, and transport becomes far less sensitive to an external field. We note also that
equation (34) contains a factor depending on the external magnetic field in the denominator.
This is in contrast with the case of bipolarons (28), where the field dependence is suppressed
by a small factor exp(−Jst/kBTc). This field dependence, however, is small since always
µBH/kBTc � 1, and it quickly vanishes in the low-temperature phase when the exchange
interaction sets in (m 6= 0), as one can see from the expression for the parameterζ above. The
singular behaviour ofy as a function of the density forn → 0, and the Zeeman splitting of
the impurity states make the transition far less sensitive to the magnetic field. As a result,no
quantitative description of the experimental CMR data has been found with the localization of
polarons due to disorder.

9. Conclusions

In conclusion, we have developed a theory of the ferromagnetic–paramagnetic phase transition
in doped magnetic charge-transfer insulators with a strong electron–phonon coupling. We have
found that a few non-degenerate polarons in the p band polarize localized d electrons because
of the huge density of states in the narrow polaronic band. For a sufficiently large p–d exchange
JpdS > 1, we have obtained acurrent-carrier-density collapseat the transition owing to the
formation of immobile local pairs in the paramagnetic phase with the binding energy1 about
twice that of the polaron level shift [15]. Depending on the ratio1/(JpdS), the transition is
first or second order [38].

We have explained the resistivity peak and the colossal magnetoresistance of doped
perovskite manganites—figure 3—as the result of the current-carrier-density collapse due
to the binding of polarons into local pairs (bipolarons). The density of these immobile pairs
has a sharp peak at the ferromagnetic transition when the system is cooled down through
the critical temperatureTc. Below Tc the binding of polarons into pairs competes with the
ferromagnetic exchange of p holes with the Mn d4 local moments, which tends to align the
polaron moments and, therefore, breaks those pairs apart. The spin-polarized polaron band
falls below the bipolaron band upon decrease in temperature, so all carriers are unpaired at
T = 0 if JpdS − 1 > W . AboveTc, the bipolaron density decreases because of thermal
activation across the polaron binding energy. These competing interactions lead to the unusual
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behaviour of CMR materials, the huge sensitivity of their transport to external field, and the
very large negative magnetoresistance.

There is a crossover around the transition temperature from polaron tunnelling at low
temperatures to polaron hopping, where the latter dominates at high temperatures. This
explains the temperature behaviour of the resistivity over a wide temperature range around
the transition. The ferromagnetic-to-paramagnetic transition is also accompanied by a sharp
anomaly in the specific heat.

The present theory provides a natural explanation for the temperature-dependent gap
feature in tunnelling spectra [24] and the giant isotope effect on the temperature of the
ferromagnetic transition [16]. One of our main conclusions is that the highly polarized ferro-
magnetic phase of manganites is a polaron-doped semiconductor rather than a metal.

We expect the present theory to be general enough to also account for the giant magneto-
resistance observed in pyrochlore manganites [47] and other systems [9]. It is worth mentioning
in this regard that the present theory requires the presence of strong electron–phonon coupling
of any origin, but it doesnot require the presence of Jahn–Teller distortions and/or the
double-exchange mechanism. Note that the Jahn–Teller distortions and the double-exchange
mechanism are certainly absent in, for instance, pyrochlore manganites, chromium spinels [9],
and other CMR systems, so the ideas based on the double exchange cannot be applied there at
all. It is believed that at least in perovskite manganites the local Jahn–Teller distortion may be
involved in defining the crystal structure of the parent insulating phases [48], although tilting
distortions of MnO6 octahedra are just a result of steric conditions [9, 49]. Apparently, the
ratio of the sum of Mn and O ionic radii,rMn + rO, and(rLa + rO)/

√
2 (the misfit parameter)

substantially differs from unity, thus making a cubic structure unstable and favouring a
rotation of MnO6 octahedra [1,49]. The tetragonal distortion of MnO6 is large; its symmetry
corresponds to a notion of the Jahn–Teller local distortion. However, since the steric interaction
is strong, it necessarily deforms the lattice, thus rendering the Jahn–Teller derivation, strictly
speaking, inapplicable.

It is also believed that doping by divalent metals introduces holes into the Mn3+ d shell,
since the doped systems are less distorted [50]. This argument, which may have supported the
relevance of the double-exchange mechanism for at least perovskite manganites, contradicts
the site-sensitive spectroscopic probes [22,26], which show unambiguously that holes reside on
O sites. It also neglects two important facts, that (i) the doping is heavy (&1021 carriers cm−3)
and there is a substantial size difference between the impurity and host atoms and (ii) the O p
holes are hybridized with the d states on Mn3+, depending on the value of the charge-transfer
gap. Both effects, together with screened Coulomb hole–hole repulsion, can apparently explain
the observed changes in the lattice distortion upon doping without invoking the Jahn–Teller
mechanism. These short-range interactions may well be responsible for the charge-ordered
phases observed at some doping levels in manganites [9]. It would be interesting, in this regard,
to perform quantum-chemical calculations of MnO6 clusters with holes doped onto O site(s).

Changes and the amount of disorder in the bond lengths are very important for
characterizing the properties of polaronic systems. The reduction in bond-length distribution
width as a result of cooling throughTc in doped manganites has been attributed to (at least
partial) delocalization of doped carriers in the low-temperature ‘metallic’ phase. Since the
data show that the carriers retain their polaronic character belowTc, and the residual width
of the Mn–O bond-length distribution remains larger than that of CaMnO3 [50], where the
Jahn–Teller Mn3+ ions are absent, the reduction of the width should be mainly related to
instability of bipolarons in this temperature region. Breaking of polaron bound pairs belowTc
may result in a reduction of bond-length distribution width, and we shall address this question
elsewhere. It is worth repeating that whether or not the Jahn–Teller distortions play any role
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in doped perovskite manganites and the exact location of the carriers are of no importance for
the present scenario of the CMR.
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